Recall of facts

Recall and use multiplication and division facts for 3x,4x and 8x tables.

- 1. Practice counting in order forwards and backwards
- 2. Recall the multiplication and division facts in order
- 3. Recall the facts in a random order and link them to fractions

Calculate using what you know...

If I know $7 \times 3 = 21$ then $8 \times 3 = 24$ because it is one more group of 3 and $6 \times 3 = 18$ because it is 1 less group of 3

1x 2x 3x 4x 5x 6x 7x 8x 9x 10x 3 6 9 12 15 18 21 24 27 30

Multiplication and division can be represented in different ways...

These structures show the relationship between multiplication and division.

Bar model

$$7 \times 3 = ?$$
 $3 \times \square = 21$
 $21 \div 3 = ?$ $21 \div \square = 3$

Always Sometimes

Every times table

associated division

facts. Explain your

fact has two

Never?

answer

Array

Number Lines

Year 3

Multiplication and Division (including fractions)

Multiplying is the inverse (opposite) of dividing

If I know one fact, what else can I derive?

If I know... $4 \times 8 = 32$ Then I also know $8 \times 4 = 32$

And $32 \div 4 = 8$ and $32 \div 8 = 4$

Count on in multiples of 4

Prove it

Division as grouping

 $30 \div 6$ 30 put into groups of 6 gives 5 groups

Finding fractions of a given quantity

We can find a fraction of an amount by following these simple steps.

- Draw a bar model.
- Look at the denominator and divide the bar into equal parts. 4
- Calculate the value of each part $28 \div 4 = 7$
- Look at the numerator and colour this number of parts. 3

parts

- Find the total of all the coloured parts. $3 \times 7 = 21$ Find 34 of 28

Use a variety of words

multiple, multiply, array, multiplication tables, product, twice, double, repeated addition equal groups of, divide, divided by, divided into, quotient remainder, half, quarter, third, partition,

Equivalent fractions

inverse

Count in tenths

Problems

Sally has baked some buns. She counted her buns in 4's and had 3 left over. She counted them in fives and had four left how many buns has Sally got?

Scaling - How many times greater or smaller?

In a tube of smarties, for every blue smartie, there were 3 orange smarties

